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A B S T R A C T   

Automated avalanche detection has previously relied on satellite imagery, which is typically unsuitable for real- 
time monitoring due to long revisit times. To address this, we propose automating avalanche detection using 
photographs taken from the ground. This paper introduces image classification and avalanche segmentation tasks 
on a publicly-released dataset of 4090 photographs annotated by experts. Using the ResNet and YOLO archi-
tectures, we achieve avalanche detection F1 scores of 94.4% per image and 65.4% per avalanche region, 
demonstrating the potential that this method offers for avalanche monitoring. 

In contrast with existing approaches, we label images by avalanche type into four distinct categories: glide, 
loose-snow, slab, and no avalanche. This labelling scheme provides more detail on avalanche events than binary 
labels and is shown to improve model F1 scores. Moreover, our models do not require a digital elevation model, 
simplifying application to new areas. Trained models can be used for real-time avalanche monitoring and to 
gather temporally continuous data for the improvement of existing avalanche forecasting models. 

The code and dataset are available at github.com/j-f-ox/avalanche-detection.   

1. Introduction 

Snow avalanches, hereafter referred to as avalanches, are sudden and 
rapid downslope movements of snow (Thomas and Goudie, 2013). In 
addition to infrastructural damage (Fuchs and Bründl, 2005; 
Jóhannesson and Arnalds, 2001), avalanches cause an average of over 
100 fatalities each year in the European Alps (Techel et al., 2016), 
making avalanche prediction, prevention, and detection an important 
safety and economic concern. 

Despite efforts to mitigate the risks of avalanches, they will never be 
entirely preventable, which makes continuous monitoring necessary for 
two main reasons: firstly, rapid avalanche detection is vital for rescue 
operations and monitoring critical infrastructure. Secondly, detailed 
information on environmental conditions at the time of an avalanche 
release can be used to improve avalanche forecasting models (Schweizer 
and Herwijnen, 2013; Eckerstorfer et al., 2016), which in turn enables 
more precise risk management. 

Avalanche monitoring can be conducted in situ or remotely and with 

or without human presence. Currently, avalanche monitoring relies in 
part on field observations which may suffer from biases towards easily 
accessible avalanches in fair weather conditions and place observers at 
risk (Eckerstorfer et al., 2016; Schweizer et al., 2015). By contrast, 
remote sensing can provide data on avalanche events over larger re-
gions, including otherwise inaccessible areas (Eckerstorfer et al., 2016). 

Remote sensing methods often utilise satellite data to enable 
continuous spatial coverage over large regions while lowering mainte-
nance overheads compared to local systems. However, satellites are 
typically unsuitable for real-time monitoring due to lengthy revisit times 
of 1–12 days depending on latitude (Eckerstorfer et al., 2016; Hafner 
et al., 2021). Low temporal resolution poses a severe limitation in time- 
sensitive scenarios such as rescue operations where responses should be 
initiated within minutes rather than days. Furthermore, the spatial 
resolution of satellite images is often insufficient to identify small and 
medium-sized avalanches (Hafner et al., 2021). 

In this paper, we propose a novel method for automated remote 
avalanche detection in ground-based photographs using convolutional 
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neural networks (CNNs). Our contributions are as follows:  

1. We release a dataset of 4090 expert-labelled photographs containing 
7228 outlined avalanches.  

2. We propose training models on data labelled by avalanche type, a 
marked departure from previous studies which only train models for 
binary avalanche detection. We then analyse the impact of this 
additional information on prediction results.  

3. We consider two distinct methods of avalanche detection: classifying 
entire images and segmenting each visible avalanche. Benchmark 
scores are provided for both approaches to provide a baseline for the 
research community and to demonstrate the viability of our pro-
posed method. 

Our ultimate aim is to automate real-time avalanche monitoring 
using existing networks of freely accessible mountain web cameras 
(webcams). By analysing webcam streams with deep learning models, 
we will be able to gather real-time avalanche data in high temporal 
resolution without incurring additional installation or maintenance 
costs. As of March 2023, a case study is ongoing in Tyrol, Austria as a 
first step towards operational implementation. 

2. Current methods of avalanche detection 

It is important to detect avalanches after they have released for two 
reasons: firstly, to identify danger to human life or infrastructure as soon 
as possible. Secondly, data on avalanche releases is essential for 
avalanche forecasting (EAWS, 2022b), both as an indicator of current 
snowpack stability and to improve existing models of avalanche activity. 
Avalanches can be detected either in the field or remotely: we discuss 
both approaches in this section with particular emphasis on the latter. 

2.1. Field observations 

Human observers can identify and measure avalanches during 
fieldwork, and avalanche warning services conduct snowpack stability 
tests to estimate the probability of additional avalanches. Although it is 
common practice to rely on field observations for avalanche monitoring 
and danger assessment, they are impractical over larger regions due to 
the human effort required and a lack of trained observers. Field obser-
vations also lead to biases in gathered data towards easily accessible 
areas and mild weather conditions (Lato et al., 2012; Eckerstorfer et al., 
2016) and are time-consuming and therefore costly. Helicopters enable 
gathering data in otherwise inaccessible locations but suffer from similar 
limitations such as low temporal resolution, high costs, and restriction to 
fair weather conditions. 

2.2. Remote monitoring 

Avalanches can be detected using ground-based sensors, such as 
seismic (Bessason et al., 2007; Heck et al., 2018), radar (Meier et al., 
2016), and infrasound sensors (Hendrikx et al., 2018). Although these 
data sources enable weather-independent monitoring, the prerequisite 
installation of sensors near avalanche paths limits their coverage to 
relatively small areas (van Herwijnen and Schweizer, 2011; Hendrikx 
et al., 2018). In contrast, trained experts can use satellite data to 
manually identify medium and large avalanches over larger regions 
(Eckerstorfer et al., 2014; Hafner et al., 2021). Synthetic-aperture radar 
(SAR) satellites such as Sentinel-1 provide freely available data inde-
pendent of cloud coverage, but also result in the avalanche size being 
underestimated compared to optical satellites (Eckerstorfer et al., 2017; 
Hafner et al., 2021). 

Previous work has explored two distinct approaches to automating 
avalanche detection in satellite images. In classification-based ap-
proaches, models are trained to classify whether an entire image patch 
contains any avalanches, whereas in segmentation-based approaches, 

models are trained to outline each individual avalanche. As a result, 
image classification is considerably simpler than avalanche segmenta-
tion; however, classification models are then unable to distinguish be-
tween one and multiple avalanches in a single image. 

Automated avalanche segmentation in satellite data has been 
investigated using object-based models (Bühler et al., 2009; Lato et al., 
2012; Korzeniowska et al., 2017; Singh et al., 2022), k-means image 
clustering (Larsen et al., 2013; Vickers et al., 2016), thresholding based 
on radar backscatter (Eckerstorfer et al., 2019; Karas et al., 2021), and 
regression on additional causative factors (Liu et al., 2021). Convolu-
tional neural networks (CNNs) have also been used for avalanche seg-
mentation. For instance, Bianchi et al. (2021) trained a model based on 
the U-Net architecture (Ronneberger et al., 2015) to detect avalanches in 
Sentinel-1 SAR images and Hafner et al. (2022) trained a custom 
DeepLabV3+ CNN with a ResNet backbone for avalanche identification 
in SPOT 6/7 images. Moreover, CNNs have been used in classification- 
based approaches by Kummervold et al. (2018) and Sinha et al. 
(2019) who both detected avalanches in Sentinel-1 SAR data with VGG 
models (Simonyan and Zisserman, 2014) pretrained on the ImageNet 
dataset. 

These methods of avalanche detection, which are summarised in 
Table 1, mostly rely on satellites with revisit times of 1–12 days (Eck-
erstorfer et al., 2016; Hafner et al., 2021) and are therefore unsuitable 
for time-sensitive applications where avalanches should be detected 
within minutes. In the case of airborne cameras and SPOT 6/7, data are 
not continuously available but must be specifically ordered (Hafner 
et al., 2021), making these sources unsuitable for ongoing real-time 
monitoring. Furthermore, most of these approaches require a digital 
elevation model (DEM) or manual mask to exclude areas where ava-
lanches are unlikely to occur, such as flat terrain and very steep slopes. 
While this filtering can reduce the search space, it can complicate 
applying these methods to new areas since a sufficiently detailed DEM or 
mask must first be obtained for each region of interest. 

2.3. Webcams in automated environmental monitoring 

Ground-based photography has been employed in automating the 
monitoring of environmental data such as snow depth (Fromm and 
Adams, 2016) and snow cover evolution (Valt et al., 2013). In the field of 
avalanche detection, some avalanche warning services manually review 
webcam data to obtain an overview of the current avalanche situation 
(Stucki, 2006). Time-lapse photography has also been used to auto-
matically measure glide crack opening dynamics by identifying snow- 
free pixels around manually selected regions of interest (Fees et al., 
2023). Additionally, Hafner et al. (2023a) recently proposed an 

Table 1 
A selection of existing methods of automated avalanche detection.  

Paper Model/Technique Sensor 

Bühler et al. (2009) Object-based Airborne camera (RGB/NIR) 
Korzeniowska et al. (2017) Object-based  

Lato et al. (2012) Object-based QuickBird (panchromatic) 
Larsen et al. (2013) Bag-of-textons  

Vickers et al. (2016) k-means 

Sentinel-1 (SAR) 

Kummervold et al. (2018) VGG-19; AConvNets 
Sinha et al. (2019) VGG-16 
Eckerstorfer et al. (2019) Image thresholding 
Bianchi et al. (2021) U-Net 
Liu et al. (2021) SVM 
Karas et al. (2021) Image thresholding  

Hafner et al. (2022) DeepLabV3+ SPOT 6/7 (RGB/NIR) 

Singh et al. (2022) Object-based Sentinel-2 (RGB/NIR/SWIR)  
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interactive method of avalanche segmentation in webcam images. In 
their approach, a human annotator initially clicks on an avalanche and 
then iteratively corrects AI-generated outlines. 

However, a thorough review of the literature indicates that, to the 
best of our knowledge, no prior studies have utilised ground-based 
photography to fully automate avalanche detection. Our work, there-
fore, proposes a novel approach to automating avalanche monitoring. 

3. Dataset 

In conjunction with this paper, we are releasing a dataset of 4090 
photographs containing 7228 avalanches which were manually outlined 
by avalanche experts (University of Innsbruck, 2023).1 Annotation by 
domain specialists is commonplace in machine learning and is the 
standard approach for avalanche monitoring (Hafner et al., 2023b; 
Bianchi et al., 2021). By releasing this dataset, we aim to encourage 
further research into automated avalanche detection in ground-based 
photographs, as we believe that ground-based photography has great 
potential to improve operational avalanche monitoring. 

The studies discussed in section 2 treat automated avalanche 
detection as a binary classification problem, focusing on determining the 
presence or absence of avalanches. However, the cause of the avalanche 
release correlates heavily with the visual features of the resulting 
avalanche (McClung and Schaerer, 2000). We therefore propose label-
ling training data by avalanche type. We hypothesised that this labelling 
scheme could improve the performance of avalanche detection models 
by providing additional contextual information during training. 

3.1. Avalanche types 

Avalanches can be classified by their release type into three cate-
gories: glide avalanches, loose-snow avalanches, and slab avalanches 
(McClung and Schaerer, 2000; Schweizer et al., 2015). These types of 
avalanches can be distinguished a posteriori by avalanche experts due to 
differing visual features which are summarised below:  

• Glide avalanches are characterised by their gliding mechanism: the 
entire depth of the snowpack glides downslope, exposing the ground 
beneath. The avalanche release may be preceded by the formation of 
full-depth tensile cracks in the snowpack, known as glide cracks 
(Schweizer et al., 2015), which are visible in Fig. 1.  

• Loose-snow avalanches release at a single point and spread out in a 
triangular shape as they move down the slope, entraining more 
snow. They may appear darker or lighter than the surrounding snow 
depending on lighting conditions (see Fig. 2).  

• Slab avalanches occur when a weakness within the snowpack 
propagates, resulting in the release of a cohesive slab of snow 
(McClung and Schaerer, 2000; Schweizer et al., 2015). The snowpack 
above the collapsed weak layer slides down the slope, resulting in a 
sharp line (the crown fracture) where the avalanche released (see 
Fig. 3). This stands in contrast to glide avalanches in which the entire 
snowpack moves along the ground below, typically over smooth 
surfaces like vegetation or rock. 

3.2. Dataset photographs 

A key contribution of this study is releasing a freely accessible 
dataset of 4090 photographs2 containing 7228 labelled avalanches. The 
dataset contains photographs taken in the field in 2000/2001–2021/ 

2022 with mean dimension 3431× 2431px and standard deviation 
1603× 1086px. The images each have the date and approximate loca-
tion at which they were taken available as metadata, with 1276 different 
locations across the Alps represented. 

Mountains and avalanches are depicted at a range of scales in the 
dataset (see e.g. Fig. 2 or Fig. 3). This heterogeneity reflects the wide 
range of dimensions inherent to real-world applications of this research, 
as avalanches may span from a few metres to many kilometres wide 
(EAWS, 2022a). Most photographs in the dataset were taken from the 
ground: additional images from low-flying helicopters were included 
only if the annotators deemed that they could feasibly have been taken 
by webcams. 

3.3. Dataset annotation 

Avalanche experts outlined each visible avalanche with a polygonal 
bounding box and assigned the avalanche to one of three categories: 
GLIDE, LOOSE, or SLAB referring to glide, loose-snow, and slab ava-
lanches respectively (see Fig. 4). The experts were instructed to draw 
outlines encompassing the avalanche release area and the runout as 
these both contain relevant visual features. Images then received an 
overall label corresponding to the avalanche release type with the highest 
number of annotated pixels, or overall label NONE if no avalanches were 
annotated.3 

This multiclass annotation is a novel approach to automating 
avalanche detection. Our proposed labelling scheme can be viewed as a 
direct extension of more traditional approaches that consider only the 
presence or absence of avalanches, providing additional details on the 
causes of avalanches without losing information. In cases where one 
wishes to prioritise avalanche detection irrespective of the avalanche 
type, such as for urgent rescue operations, the GLIDE, LOOSE, and 
SLAB labels can be combined into a single AVALANCHE label, as shown 
in Fig. 5. 

Of the 3019 dataset images containing avalanches, 311 contain 
avalanche regions with at least two distinct labels. Slab avalanches have 
the highest support in the dataset, representing the overall label in 46% 
of images (see Table 2). In contrast, loose-snow avalanches constitute 
only 10% of the overall image labels despite representing 25% of the 
annotated avalanches. 

To assess the consistency of annotation between experts, we con-
ducted a reproducibility study on 112 images labelled by two different 
annotators. Our analysis revealed a pixelwise agreement of 93% and a 
pairwise IOU of 0.71 for the labelled avalanche regions. The experts also 
demonstrated a high level of agreement on the avalanche type, pre-
dicting the same label for 99.6% of the pixels labelled as avalanches by 
both annotators. However, the two annotators outlined a different 
number of avalanches in 47% of the images, suggesting that clearer 
guidance should be provided about how to delimit individual ava-
lanches during annotation. A similar finding was reported for Radarsat-2 
SAR images by Eckerstorfer and Malnes (2015), who found a discrep-
ancy in the number of annotated avalanches due to one expert outlining 
multiple adjacent avalanches as a single avalanche. 

4. Methodology 

4.1. Classification versus segmentation 

Previous research has explored two distinct approaches to avalanche 
detection: determining whether an image patch contains any avalanches 

1 “Experts” here refers to people working in the snow and avalanche industry 
or conducting research in this field.  

2 4034 images are from the database of the Avalanche Warning Service Tyrol 
and other Austrian sources and 56 are from the Avalanche Warning Service 
Bavaria. 

3 In the unlikely event that two avalanche labels have the same number of 
visible pixels in a single image, the overall label should reflect the relative 
frequency of release types, with SLAB having the highest priority, followed by 
GLIDE, and then LOOSE. However, this was not the case for any images in the 
dataset. 
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and identifying each individual avalanche. We defined two tasks on the 
dataset corresponding to each approach:  

– The image classification task is to determine whether an entire 
photograph contains any visible avalanches and classify the domi-
nant avalanche type if so. This corresponds to predicting the overall 
image labels described in subsection 3.2.  

– The avalanche segmentation task requires predicting a bounding 
rectangle and type for each avalanche in a given photograph, cor-
responding to a typical object detection scenario. Note that, in 
contrast to the image classification task, there is no need for an 
explicit NONE label: any image region that is not part of a predicted 
bounding box is implicitly assumed to be free of avalanches. 

The avalanche segmentation task can therefore be considered a more 

Fig. 1. Three images from the dataset depicting glide avalanche at a range of scales. Glide cracks expose the terrain beneath the snowpack in (a), while (b) contains a 
glide avalanche with textured snow runout visible in the lower half of the photograph. One large glide crack is visible in (c), part of which has released as a 
glide avalanche. 

Fig. 2. Three images from the dataset containing loose-snow avalanches. Loose-snow avalanches with textured runout at the base are visible in (a) and (b), while (c) 
contains several loose-snow avalanches visible as lighter regions of perturbed snow. Note that each avalanche originated at a single point and then spread laterally 
and downwards as it accumulated more snow. 

Fig. 3. Three dataset images showing slab avalanches in a variety of lighting conditions and at different scales. The crown fracture may range from a few metres to 
many kilometres in width. 

Fig. 4. An image from the dataset containing two loose-snow avalanches and two slab avalanches is shown in (a). Each avalanche was outlined by an expert with a 
polygonal bounding box, as shown in (b). The image has overall label SLAB as this avalanche type has the most visible pixels. 

J. Fox et al.                                                                                                                                                                                                                                      
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challenging subtask of the image classification task since it requires 
identifying each individual avalanche rather than the overall image 
label alone (see Fig. 6). 

4.2. Model training 

The dataset was split into 3612 training images and 478 test images, 
with images at the same location grouped into the same split to avoid 
leaking information due to visual similarities between images at the 
same locations. In each training run, 10% of the training data were 
reserved for model validation. We then repeated each training run three 

times with different validation sets on a GeForce RTX 3090 GPU. The 
test images were withheld from all training runs and used only to 
evaluate model performance on unseen data. To improve model gener-
alisation, we applied data augmentation techniques during training 
including affine transformations, variations in colour, and random 
horizontal flips. 

4.2.1. Classification model training 
For the image classification task, we utilised VGG (Simonyan and 

Zisserman, 2014) and ResNet (He et al., 2016) models which were pre- 
trained on the ImageNet dataset. The models were then finetuned for 
avalanche detection via transfer learning using the Adam optimiser 
(Kingma and Ba, 2015) with a learning rate of 2.25 × 10− 3 to minimise 
the cross-entropy loss on the training set. If the validation accuracy had 
not improved for six consecutive epochs, then training was stopped and 
the model with the highest validation accuracy from the training run 
was saved. To reduce model overfitting, we first resized the images so 
that their shortest side was 105% of the network input size and then 
cropped a different random square from each image in every training 
epoch before applying further data augmentation transformations. Un-
less otherwise stated, the classification models were trained with 
network input size 704px × 704px. 

4.2.2. Segmentation model training 
For the avalanche segmentation task, we trained version 3 of the 

YOLO (You Only Look Once) network (Redmon and Farhadi, 2018) to 
predict the avalanche bounding boxes. All YOLO models were trained 
with an Intersection Over Union (IOU) threshold of 0.2 and a confidence 
threshold of 0.25 using an open-source framework from Ultralytics 
(Jocher, 2020). The IOU threshold describes the minimum overlap be-
tween a predicted bounding box Boxpred and a ground truth bounding 
box Boxtrue for the prediction to be classed as correct, defined as 

IOU =

⃦
⃦ Boxpred ∩ Boxtrue

⃦
⃦

⃦
⃦ Boxpred ∪ Boxtrue

⃦
⃦

where ‖⋅‖ refers to the number of pixels in a region. Training was then 
halted if the validation mean average precision (mAP) had not improved 
for the last 25 epochs, where the mAP for a specific IOU is calculated as 

mAPIOU =
1

|L||C|

∑

label∈L

(
∑

conf∈C
precisionIOU, label, conf

)

for a set of labels L and confidences 
C = {0.001, 0.002, 0.003,…, 1.000}. 

In addition to the data augmentation transformations mentioned 

Fig. 5. Labelled data are used to train models which can then predict labels for 
previously unseen images. Existing approaches to automating avalanche 
detection use binary labels, as illustrated in (a). By contrast, we propose 
labelling avalanche data by avalanche type, as shown in (b). The model output 
can still be reduced to binary labels after prediction if desired (dashed arrows). 

Table 2 
Label distribution for each task. The distribution of labels reflects the relative 
occurrence of each avalanche type, with slab avalanches being the most com-
mon and loose-snow avalanches being the least common (Schweizer et al., 
2015).  

Label Meaning Number of Images Number of Avalanches 

GLIDE Glide avalanche 716 2489 
LOOSE Loose-snow avalanche 416 1827 
SLAB Slab avalanche 1887 2912 
NONE No avalanche visible 1071 N/A 

Σ  4090 7228  

Fig. 6. A dataset image containing 15 annotated glide avalanches. For the image classification task, the overall image label GLIDE should be predicted for (a), 
whereas for the avalanche segmentation task, a labelled bounding box should be detected for each visible avalanche as shown in (b). 

J. Fox et al.                                                                                                                                                                                                                                      
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above, we applied mosaic augmentation (Bochkovskiy et al., 2020) to 
training images to improve model generalisation. This is a technique 
whereby four images are arranged into a grid before passing this com-
posite image to the network in order to present images to the network in 
different contexts. 

4.3. Experiments 

We began by comparing a range of deep learning architectures and 
depths for both tasks to identify the most suitable architecture for 
further experiments. For the classification task, we trained ResNet 
models of depths 18, 34, 50, 101, and 152 (He et al., 2016) and VGG 
models of depths 13, 16, and 19 (Simonyan and Zisserman, 2014). For 
the segmentation task, we compared the results for YOLOv3 (Redmon 
and Farhadi, 2018), YOLOv3‑tiny (Adarsh et al., 2020), and YOLOv3- 
SPP (Huang et al., 2020). YOLOv3-SPP incorporates spatial pyramid 
pooling, which enables capturing information at multiple scales at the 
cost of more computational resources (Huang et al., 2020). On the other 
hand, YOLOv3‑tiny has fewer layers than YOLOv3, making training and 
inference faster (Adarsh et al., 2020). 

Following the selection of potential base architectures, we went on to 
explore the extent to which images can be downscaled without 
compromising model performance. To investigate this, we trained 
models on image sizes ranging between 224px and 1120px in step sizes 
of 224px. Downsizing images before passing them to the network greatly 
reduces computational requirements but risks removing important de-
tails, especially for smaller or low-contrast avalanche regions. 

Finally, we investigated the impact of labelling training data by 
avalanche release mechanism on model performance. We trained net-
works on the original dataset with avalanche labels GLIDE, LOOSE, and 
SLAB, and on the same images in which all avalanche regions were 
mapped to a single AVALANCHE label and compared model results on 
previously unseen images. 

4.4. Metrics 

We evaluated model performance using the metrics 

precision =
TP

TP+FP
, recall =

TP

TP+FN
, F1 score = 2⋅

precision⋅recall
precision+ recall

,

where TP refers to the number of true positive classifications, TN to true 
negatives, FP to false positives, and FN to false negatives. Scores are 
calculated per image for the image classification task and per bounding 
box for the avalanche segmentation task. For each prediction, it is then 
of interest:  

i) whether the predicted release mechanism is correct, and  
ii) whether a predicted avalanche image or bounding box corresponds 

to any labelled avalanche region, regardless of release mechanism. 

For the former, we consider scores on the original dataset labels. In 
the latter case, we calculate a binary avalanche detection score by 
applying the label mapping 

{LOOSE ↦ AVALANCHE, GLIDE ↦ AVALANCHE, SLAB ↦ AVALANCHE}

to the ground truth and predicted labels after inference (see also Fig. 5). 
These binary scores capture the ability of models to detect avalanches 
regardless of release type. 

The YOLO models output a confidence value for each prediction. The 
confidence threshold describes the minimum confidence required for a 
predicted bounding box to be accepted. Unless otherwise stated, the 
scores for the avalanche segmentation task are given at the confidence 
threshold that maximises the F1 score for each training run. 

5. Results 

5.1. Architecture comparison 

Image classification results for ResNet and VGG networks of various 
depths are shown in Table 3. Results were compared on the validation 
set to prevent information about model performance on the test set from 
influencing the architecture selection, thus ensuring that the test set 
remains a truly independent measure of the models' generalisation 
abilities. 

The ResNet101 architecture achieved the highest scores on the 
original dataset labels, with an F1 score of 85.7% and an accuracy of 
85.6%, while ResNet152 achieved higher binary scores for avalanche 
detection regardless of avalanche type. Notably, the ResNet101, 
ResNet50, and ResNet152 architectures outperformed the VGG net-
works in all metrics considered. In the following experiments, we utilise 
ResNet101 and VGG-19 as the base architectures for image 
classification. 

For the avalanche segmentation task, we compared the performance 
of YOLOv3‑tiny, YOLOv3, and YOLOv3-SPP on images of size 448px and 
896px. YOLOv3‑tiny performed poorly for both input sizes, while the 
regular and SPP variants achieved comparable results on images of size 
448px (see Table 4). YOLOv3-SPP exhibited superior performance on 
896px images, so this architecture is used in all subsequent avalanche 
segmentation experiments. 

We next investigated the influence of the IOU threshold used for 
evaluation on model performance. Decreasing the IOU threshold resul-
ted in fewer false negatives and false positives, increasing both recall and 
precision on the validation set (see Fig. 7). We therefore report mAP 
values at IOU 0.05 in the remainder of this paper. 

5.2. Image size 

Following the selection of suitable base architectures, we investi-
gated the impact of image size on network performance. Doubling the 
image size from 224px to 448px resulted in significant F1 score im-
provements of 8.1% for the classification models and 10.1% for the 
segmentation models (see Fig. 8). Further increasing the input size from 
448px to 896px resulted in additional improvements of 2.5%, 1.7%, and 
5.3% for ResNet101, VGG-19, and YOLOv3-SPP respectively. However, 
increasing the image size from 896px to 1120px slightly decreased the 
mean F1 for YOLOv3-SPP by 0.5%. 

5.3. Labels 

Finally, we investigated the impact of labelling avalanche regions by 
avalanche type on model performance. We trained models on the orig-
inal dataset (with avalanche labels GLIDE, LOOSE, and SLAB) and on 
the same images in which all avalanche regions were assigned a single 
AVALANCHE label. Note that it is important to consider binary avalanche 
detection scores in this context to ensure a fair comparison of model 
performance on an equal number of target labels. 

Labelling training images by avalanche type improved performance 

Table 3 
Benchmark image classification results on the validation set (± standard devi-
ation) sorted by F1 score.  

Model F1 Accuracy Binary F1 Binary Accuracy 

ResNet101 85.7 ± 0.4 85.6 ± 0.3 94.5 ± 0.6 92.1 ± 0.9 
ResNet50 84.9 ± 0.3 85.0 ± 0.2 94.9 ± 0.2 92.5 ± 0.4 
ResNet152 84.1 ± 0.7 84.1 ± 0.7 95.7 ± 1.0 93.6 ± 1.3 
VGG-19 83.1 ± 0.6 83.1 ± 0.7 94.3 ± 0.4 91.3 ± 0.3 
ResNet34 81.4 ± 0.3 81.2 ± 0.1 94.5 ± 1.2 91.7 ± 1.6 
ResNet18 80.8 ± 1.8 80.6 ± 1.8 91.9 ± 1.3 88.1 ± 2.0 
VGG-13 80.1 ± 0.8 80.2 ± 0.9 92.4 ± 0.5 89.0 ± 0.6 
VGG-16 79.1 ± 1.5 79.4 ± 1.0 92.4 ± 0.3 88.6 ± 0.5  
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in every metric considered for both classification architectures, leading 
to F1 score increases of 7.7% and 10.1% for ResNet101 and VGG-19 
respectively (see Table 5). For the avalanche segmentation model, 
labelling training data by type increased the F1 scores by 0.6% and 1.2% 
for images of size 448px and 896px respectively (see Table 6). In 
particular, training on data labelled by avalanche type increased the 
model recall and the confidence threshold at which this maximal F1 
score was obtained (see Fig. 9), but led to a decrease in the corre-
sponding precision. 

Finally, we measured the labelwise performance on the test set for 
the ResNet101 and YOLOv3-SPP training runs with the highest valida-
tion scores. Both models exhibited poorer performance for loose-snow 
avalanches than the other two avalanche types, as is visible in Fig. 10, 
but this discrepancy was significantly more pronounced for the seg-
mentation model. In particular, YOLOv3-SPP achieved F1 scores of 
around 77% for slab avalanches compared to 47% for loose-snow ava-
lanches. The classification model also displayed significant confusion for 

the label LOOSE, misclassifying 10.6% of the loose-snow images as NONE 
and 8.6% as slab avalanches. In addition, 9.9% of the GLIDE images 
were misclassified as slab avalanches. 

6. Discussion 

6.1. Experimental analysis 

In our architecture selection experiments, the shallower networks 
generalised relatively poorly to unseen images. In particular, the 
ResNet34, ResNet18, VGG-16, VGG-13, and YOLOv3‑tiny networks 
achieved significantly lower F1 scores than their deeper counterparts, as 
is visible in Table 3 and Table 4. This observation could be attributed to 
the limited model capacity of these smaller networks. 

We further observed a positive correlation between image size and 
model performance for both image classification and avalanche seg-
mentation (see Fig. 8). These results are noteworthy as we required 
considerably larger image sizes than those used in other domains to 
obtain satisfactory results. We believe that this is due to avalanche re-
gions becoming less visible when subjected to excessive downscaling, as 
shown in Fig. 11. Avalanches tend to be low in contrast relative to the 
image as a whole, making this domain especially sensitive to image size. 

Training deep learning models on larger images requires signifi-
cantly more computational resources. However, naively cropping 
training images to make the avalanche regions appear larger would not 
be an appropriate solution. Avalanches are natural events which can 
vary from a few metres to several kilometres in width (EAWS, 2022a), so 
the ability to detect avalanches at a wide range of scales is a challenge 
that is inherent to the domain. Furthermore, it is impossible to predict 
exactly where avalanches will release relative to stationary cameras, 
leading to more variability in apparent size. It is therefore essential that 
remote avalanche detection systems are robust across a range of 
apparent scales. 

Table 4 
Results on the validation set for three YOLOv3 variants (± standard deviation).  

Size (px) Model mAP0.05 Bin. mAP0.05 F1 Bin. F1 

448 YOLOv3-SPP 58.0 ± 0.4 65.1 ± 1.1 56.5 ± 2.8 63.7 ± 1.6 
YOLOv3 57.3 ± 1.9 65.1 ± 2.8 57.0 ± 3.0 64.1 ± 2.1 
YOLOv3‑tiny 42.6 ± 3.9 53.3 ± 4.4 45.2 ± 4.1 52.3 ± 2.8  

896 YOLOv3-SPP 60.9 ± 0.9 66.8 ± 1.2 61.7 ± 2.6 67.7 ± 1.5 
YOLOv3 58.2 ± 1.1 64.3 ± 2.5 58.9 ± 3.3 65.1 ± 1.7 
YOLOv3‑tiny 38.6 ± 5.6 45.3 ± 5.1 38.9 ± 8.5 48.8 ± 3.3  

Fig. 7. Validation precision versus recall at a range of IOU thresholds. Results 
are displayed for YOLOv3-SPP with input size 896px and confidence thresholds 
ranging between 0.001 and 1.000. 

Fig. 8. Validation F1 versus network input size for ResNet101, VGG-19, and YOLOv3-SPP models with error bars indicating the standard deviation.  

Table 5 
Image classification results for ResNet101 and VGG-19 models trained on the 
original labels (GLIDE, LOOSE, SLAB, NONE) and binary data (AVALANCHE vs. 
NONE).  

Model Labels Bin. F1 Bin. Precision Bin. Recall Bin. Acc. 

ResNet101 Original 93.8 ± 0.8 94.3 ± 1.7 93.3 ± 0.1 90.9 ± 1.3 
Binary 86.1 ± 0.6 87.5 ± 0.3 84.9 ± 1.0 89.7 ± 0.4  

VGG-19 Original 92.8 ± 0.4 91.8 ± 0.8 93.8 ± 1.2 89.1 ± 0.6 
Binary 82.7 ± 0.6 86.3 ± 3.6 81.3 ± 2.8 87.4 ± 1.1  
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Finally, we trained models on data with a single AVALANCHE label 
and on data labelled by avalanche type. Including information on 
avalanche type increased the F1 scores for both the classification models 
and the segmentation models (see Table 5 and Table 6). These results 
support our hypothesis that automated avalanche detection can be 
improved by incorporating information about avalanche types. We 
believe that the visual differences between different types of avalanches 
may have caused confusion when training models solely on binary 
avalanche labels: a multiclass labelling scheme is therefore more suit-
able for this domain. A further advantage of this multiclass approach is 
that trained models can then identify the avalanche type in previously 
unseen images. This provides a more detailed understanding of the 
current avalanche situation, which in turn can enable more precise 
avalanche forecasting. 

For the segmentation model, training on data labelled by avalanche 
type increased the confidence threshold at which the maximal F1 score 
was obtained (see Fig. 9), suggesting that providing information about 
avalanche type increased the model's confidence in its predictions. This 
increase in confidence threshold may then have contributed to the in-
crease in recall and decrease in precision visible in Table 6. However, the 
high standard deviation for precision and recall of the single-label 
models may also have played a role and warrants further investigation. 

Selecting a confidence threshold presents a natural trade-off between 
precision and recall, which raises the question of whether one wishes to 
prioritise reducing false positives or false negatives. Although we 
consider (unweighted) F1 scores throughout this study, as is standard in 
the literature, we argue that prioritising recall over precision may be 
more appropriate in the context of operational avalanche detection. 
False positive classifications can be easily refuted by experts, whereas a 
false negative delaying the detection of a new avalanche could have 
more serious real-world consequences. We therefore propose this opti-
misation question as an area for future research. 

Table 6 
Binary test results for YOLOv3-SPP trained on the original labels (GLIDE, 
LOOSE, and SLAB) and on the dataset reduced to a single label (AVALANCHE). 
Training on images labelled by avalanche type increased the mean F1 score and 
the confidence (Conf.) at which this F1 score was achieved (see also Fig. 9).  

Size (px) Labels mAP0.05 F1 Recall Precision Conf. 

448 Original 63.7 ± 1.4 63.1 ± 1.6 55.3 ± 1.8 73.6 ± 1.2 0.127 
Single-label 65.2 ± 0.6 62.5 ± 1.0 53.6 ± 4.5 76.0 ± 5.5 0.117  

896 Original 65.3 ± 1.7 65.4 ± 0.2 60.1 ± 1.6 71.7 ± 1.8 0.131 
Single-label 66.7 ± 0.5 64.2 ± 0.3 56.6 ± 5.5 75.8 ± 7.9 0.065  

Fig. 9. Mean F1 score versus confidence threshold for YOLOv3-SPP models 
trained on the original dataset labels (GLIDE, LOOSE, and SLAB) and on the 
dataset reduced to a single label (AVALANCHE). Labelling training data by 
avalanche type increased the maximum F1 score and the confidence threshold 
at which this score was attained. 

Fig. 10. Labelwise performance on the test set for the models with the highest validation scores. The normalised confusion matrix for ResNet101 is shown in (a) and 
the labelwise F1 score versus confidence for YOLOv3-SPP with input size 896px is shown in (b). 

Fig. 11. A dataset image downscaled to a height of 1120px is shown in (a), while (b) depicts the same image downscaled to height 224px. Reducing the image size to 
224px results in a significant loss of detail around the avalanche boundary and runout. 
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6.2. Qualitative analysis 

In this subsection, we focus on predictions made by the 896px 
ResNet101 and YOLOv3-SPP models with the highest validation scores, 
utilising these as a case study to explore model capabilities and sources 
of misclassifications. Both models were able to identify slab and glide 
avalanches across a range of lighting conditions and scales – as is visible 
in Fig. 12, Fig. 13, and Fig. 16 – and both models exhibited poorer 
performance for loose-snow avalanches. For real-world applications, 
one should also consider the relative impact and frequency of each type 
of avalanche. Slab avalanches were responsible for 97% of recorded 
avalanche accidents in Switzerland over a 20-year period (Techel et al., 
2016), underscoring the importance of detecting slab avalanches in 
particular. 

Initially, we considered that the lower scores for the label LOOSE 
could be due to the smaller number of loose-snow images in the dataset 
(as shown in Table 2). However, the classification model attention was 
consistently highest around the release areas of glide and slab ava-
lanches, while the model typically focused on the entirety of loose-snow 
avalanches, as can be seen in Fig. 12. This suggests that the lower scores 
for loose-snow avalanches might also be due to their less clearly defined 
release zones compared to the sharp lines marking slab crowns or glide 
cracks. 

We further observed that the YOLOv3-SPP model often predicted a 
single large bounding box surrounding several smaller loose-snow ava-
lanches, as shown in Fig. 14. This was likely due to the segmentation 
model correctly recognising the visual features associated with loose- 
snow avalanches but then having difficulty delineating their precise 
boundaries. This behaviour may in turn have contributed to the 
improvement in model skill at lower IOU thresholds visible in Fig. 7. 

Continuing our analysis, we investigated the causes of mis-
classifications. In a comprehensive review of the test predictions, we 
observed that rocks and infrastructure such as buildings and fences often 
led to false negative classifications for the classification model (as in 
Fig. 15) and false positive detections for the segmentation model. To 
address this, one could exclude areas where avalanches can not occur 
either by aligning each image with a DEM or by manually creating a 
mask for each camera location. However, this would add significant 
barriers to deploying models across larger regions due to the overhead 
required to align every camera with a suitable mask or DEM. We 
therefore intend to explore other strategies to mitigate this issue in 
future work, such as unsupervised image preprocessing techniques or 
the addition of more training data containing rocks and buildings. 

A notable finding for operational applications is that trained models 
were able to identify glide cracks and entire glide avalanches, as shown 
in Fig. 16. Around half of glide avalanches are preceded by the forma-
tion of a glide crack between 15 minutes to several days before the 
avalanche release (Fees et al., 2023). Trained models could therefore be 
employed in developing early warning systems to automatically detect 
glide cracks before they release. Such a system could allow for the timely 
enactment of safety measures such as road closures to mitigate the po-
tential harm caused by glide avalanches. 

6.3. Applications 

Automated, ongoing avalanche monitoring has previously not been 
feasible at scale in real-time. Existing satellite-based approaches are 
constrained by revisit times on the order of days (Eckerstorfer et al., 
2016), making them unsuitable for applications requiring rapid re-
sponses such as rescue operations or monitoring critical infrastructure. 
Although trained experts can identify avalanches within photographs 
(Eckerstorfer et al., 2016), the vast number of locations where ava-
lanches can occur makes manual monitoring via webcams prohibitively 
time-consuming at scale. However, trained models could be used to 
automatically filter potential avalanche images from webcam streams for 
confirmation by experts. Automating this initial identification process 

could thus enable remote avalanche monitoring in near real-time for any 
areas of interest monitored by webcams. 

There are over a thousand freely accessible webcams across the Alps 
for weather monitoring and tourism4 which could be used for avalanche 
monitoring. Using existing webcams has the advantage of not incurring 
further installation, usage, or maintenance costs. Additional webcams 
could then be installed around critical infrastructure or higher-risk areas 
if needed. A workflow whereby models are retrained on corrected pre-
dictions to iteratively improve performance over time is described by 
Fox et al. (2023). 

It is not yet clear whether image classification or avalanche seg-
mentation will provide more utility in operational settings. Image clas-
sification offers advantages such as ease of annotation and providing a 
simple overview of the avalanche situation which could serve as a 
practical solution for the rapid identification of avalanche occurrences 
at scale. Although the avalanche segmentation task is more challenging 
than image classification, it provides more details by localising each 
individual avalanche within photographs. Segmentation models are 
therefore able to detect multiple avalanches in a single image. 

A further observation from our experiments is illustrated in Figs. 14 
and 17: in several cases, the segmentation models detected less clearly 
visible avalanches which had not been identified by the annotators. A 
similar finding was reported by Bianchi et al. (2021) for SAR data. This 
highlights an exciting application of trained avalanche segmentation 
models for AI-assisted annotation. Rather than annotating images from 
scratch, avalanche experts could utilise avalanche segmentation models 
to generate initial predictions, which can then be manually refined and 
corrected. Such an approach has the potential to expedite the annotation 
process while simultaneously improving the quality of annotation. 

6.4. Limitations 

An intrinsic limitation of visible-spectrum photography is its reliance 
on clear visibility. Avalanches that are fully obscured by low clouds, 
snowfall, or darkness can not be identified in optical data by computer 
vision or by human observers, whether remotely or in the field. As most 
photographs in the dataset were captured in clear visibility, further 
experiments should be conducted on images taken in inclement weather 
conditions such as heavy precipitation or (partial) cloud occlusion to 
evaluate the robustness of the trained models. 

Using webcams rather than satellites to monitor avalanche ava-
lanches may also introduce data biases towards regions with high levels 
of tourism such as ski resorts, as these areas are more likely to have 
preinstalled webcams in mountainous regions. However, ground-based 
cameras hold a significant advantage over optical satellites in that 
they are unaffected by high clouds. To enable weather-independent 
monitoring, one could use ground-based radar sensors either alone or 
in conjunction with visible-spectrum webcams to enable avalanche 
monitoring at higher temporal resolutions than achievable via satellite 
data. 

An additional limitation of ground-based photography is the relative 
difficulty in determining the location and size of detected avalanches. 
Unlike satellite data, which are generally accompanied by the co-
ordinates of the depicted area, mountain webcams typically provide 
only the location and viewing direction of the camera. Nevertheless, 
local avalanche authorities are accustomed to responding to avalanche 
incidents without precise coordinate data and should be able to infer the 
approximate location of avalanches from the camera location and sur-
rounding mountain features. Research into estimating avalanche size in 
oblique photographs has also demonstrated relatively high coherence 

4 As of November 2023, there are 276 webcams freely accessible at foto- 
webcam.eu (https://www.foto-webcam.eu/), 223 more via feratel 
(https://www.feratel.com/en/webcams.html), and 1366 through Bergfex 
(https://www.bergfex.at/oesterreich/webcams/). 
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between expert estimations of avalanche size (Hafner et al., 2023b). 
However, the practical implications of estimating avalanche location 
and size in photographs warrant further investigation. Obtaining more 
precise measurements would likely necessitate aligning the oblique 

camera view with a topological model of the depicted area such as a 
DEM; the disadvantages of which were discussed above. 

The subjectivity introduced by treating expert annotation as the 
ground truth may be considered an additional limitation, even though 

Fig. 12. Three test images that were correctly classified by the ResNet101 model: the ground truth is shown in the top row and the corresponding Gradient-weighted 
Class Activation Mapping (Grad-CAM) heatmap (Selvaraju et al., 2020) for each prediction is displayed below. 

Fig. 13. Example predictions made by the 896px YOLOv3-SPP model. The model was able to identify slab avalanches at a range of scales and in various lighting 
conditions. The highest Intersection Over Union (IOU) value relative to the ground truth is displayed on each predicted bounding box. 

Fig. 14. Ground truth bounding boxes (left) and YOLOv3-SPP predictions with IOU values (right) for a test image containing six loose-snow avalanches. The model 
detected a very small loose-snow avalanche in the image centre which was not found by the annotators. 
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this is common practice in machine learning. To address this, we pro-
vided the avalanche experts with objective guidelines on which parts of 
the avalanches to outline and observed relatively high coherence be-
tween annotators, as discussed in subsection 3.3. An additional measure 
to minimise subjectivity would be having multiple annotators label all 
images in the dataset, but this was not feasible for this study due to 
limited resources. 

7. Conclusions 

In this paper, we presented a method for automating avalanche 
detection using ground-based photography. Our models achieved F1 
scores of 94.4% per image in the classification task and 65.4% per 
avalanche region in the segmentation task, demonstrating the potential 
of our proposed technique to advance operational avalanche moni-
toring. Furthermore, we found that labelling training data by avalanche 
type improved model F1 scores. This labelling scheme then enables 
models to identify the avalanche type in previously unseen images, 
providing additional details on the current avalanche situation which 
can be used to enhance forecasting models. In contrast to existing work 
in this field, our models do not require a DEM of the analysed regions 
which simplifies application to new regions. 

Trained models could be integrated with existing mountain webcams 
to enable detecting avalanches in near real-time at higher temporal 
resolutions than previous approaches which have relied on satellite 
data. To the best of our knowledge, this is the first study on fully auto-
mating avalanche detection in photographs that were not obtained from 
spaceborne or airborne sensors. At the time of writing, we are con-
ducting preliminary experiments using trained models to analyse live 
webcam data from the Alps. An evaluation of model performance in 
operational settings will be used to inform further research. 

One direction for future work would be to use trained models to 
continuously gather avalanche data over a designated area of interest. 
This information could then be cross-referenced with environmental 
conditions at the time of avalanche releases to improve avalanche 
forecasting models, for example following recent random forest 

Fig. 15. The SLAB image in (a) was misclassified by the ResNet101 model as NONE. The model attention is split between the avalanche region and rocks in the 
foreground and background, as is visible in the Grad-CAM heatmap in (b). Rocks were a common cause of incorrect classifications. 

Fig. 16. The Grad-CAM heatmap for ResNet101 is shown in (a) and the bounding boxes predicted by YOLOv3-SPP are shown in (b). Both models were able to 
identify glide cracks and entire glide avalanches, meaning that they could be used to detect glide avalanches before they release. 

Fig. 17. The model detected a small group of loose-snow avalanches (upper 
left) that the annotators missed. This finding suggests that the model's perfor-
mance may surpass what is indicated by numerical evaluation metrics. 
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approaches proposed by Dkengne Sielenou et al. (2021) and Pérez- 
Guillén et al. (2022). Such data would also provide valuable insights into 
the relative frequency of different avalanche types, as there is little data 
available on this subject. 

Another area for future research would be the extension of the 
models to identify people involved in avalanche situations. Object 
detection techniques could be used to locate humans in the snow in 
webcam frames prior to an avalanche, allowing for improved response 
times in rescue efforts. It is also conceivable that, with sufficient training 
data, deep learning could be applied to remote monitoring for other 
environmental hazards such as debris flow, rockfalls, or glacier collapse. 

In this study, we have shown that deep learning can be utilised to 
automate avalanche monitoring in photographs taken from the ground. 
Our results demonstrate the viability of this method of avalanche 
detection, which could have significant implications for both avalanche 
monitoring and forecasting. 
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Monteleoni, C., 2019. Can avalanche deposits be effectively detected by deep 
learning on sentinel-1 satellite SAR images?. In: Climate Informatics Paris, France. 
URL: https://hal.archives-ouvertes.fr/hal-02278230. 

Stucki, T., 2006. Lawinenprognose. Wie entsteht ein Lawinenlagebericht - Möglichkeiten 
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